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Abstract The main goal of the present review is to collect in a unified framework
the deterministic and stochastic models of emergence and amplification of chirality
by mechanisms such as asymmetric autocatalysis and absolute asymmetric synthesis.
Empirical approach and modeling have recently provided a good insight into these
phenomena. Our groups in Italy and Hungary have a wide variety of expertise both
in fields of experiments and modeling. In the last decade important results have been
achieved, however, more experiments and more detailed deterministic and stochastic
models are needed for a better understanding of details and significance of asymmetric
autocatalysis and absolute asymmetric synthesis.

Keywords Chirality ·Autocatalysis · Stochastic kinetics ·Markovian jump process ·
Multimodality · Deterministic kinetics · Polynomial differential equations

B. Barabás (B)
Department of Stochastics, Budapest University of Technology and Economics, Egry J. u. 1.,
1111 Budapest, Hungary
e-mail: belab@math.bme.hu

J. Tóth
Department of Analysis, Budapest University of Technology and Economics, Egry J. u. 1.,
1111 Budapest, Hungary
e-mail: jtoth@math.bme.hu

J. Tóth
Laboratory for Chemical Kinetics, Eötvös Loránd University, Pázmány P. sétány 1/A,
1117 Budapest, Hungary

G. Pályi
Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183,
41100 Modena, Italy
e-mail: gyula.palyi@unimore.it

123



458 J Math Chem (2010) 48:457–489

1 Introduction

Chirality (see 2.1) is an important structural feature of organic molecules. Such mol-
ecules form two isomeric forms, called enantiomers. The preparation of pure enanti-
omers is a highly actual problem of chemistry.

The elaboration of such methods requires a detailed understanding of the relevant
reaction mechanisms. One of the most popular and efficient ways for exploring reac-
tion mechanisms is chemical kinetics (the study of concentration changes as function
of time in course of the reaction).

In the history of studying this question it turned out that the usual deterministic
models of chemical reaction kinetics fail to answer all the emerging questions, in many
cases essential help is obtained from the stochastic description which in its most often
used standard form takes into consideration both the inherent randomness of chemical
reactions and also the discrete nature of matter.

It is interesting to note that early reaction kinetics started with the analysis of chi-
rality. The first quantitative kinetic measurements were made by Wilhelmy [158], who
studied the rate of inversion of cane sugar in presence of acids. He showed conclu-
sively that the rate of change at any moment is directly proportional of the cane sugar
present at the time. Later, Guldberg and Waage [52] gave a more precise quantitative
meaning to these and similar results.

The structure of our review is as follows. First, we introduce the relevant phenom-
ena, such as chirality, autocatalysis, bistability and bimodality. Then we formulate the
deterministic model of reaction kinetics which we shall use throughout as a starting
point and as a reference. We apply this model to simple common examples and also to
the formal reactions introduced to study chirality. As the stochastic models are much
less known we give a very short and terse introduction into the theory of stochastic pro-
cesses mainly to be able to formulate the stochastic models of reaction kinetics. Here
emphasis is laid upon the standard continuous time, discrete state stochastic model: a
Markovian pure jump process. Having the tool, we write down the evolution equations
for the most often used reactions, such as the Frank model and its modifications. At the
end we collect the most important knowledge on the stochastic aspects of asymmetric
autocatalysis and absolute asymmetric synthesis, and formulate open problems as well.

2 Phenomena

Let us consider the following formal chemical reaction

M∑

m=1

α(m, r)X (m) −→
M∑

m=1

β(m, r)X (m) (r = 1, 2, . . . , R), (1)

where M, R ∈ N;α, β ∈ N
M×R
0 , and α = (α(m, r)), β = (β(m, r)) are the matrices

of stoichiometric coefficients. What we are interested in at the most general level is
the quantity (concentration or number of molecules) of the species X (m) either as a
function of time or in the stationary state, i.e. on the long run. (Concrete examples can
be found in Subsection 3.1 and below.)
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2.1 Chirality

Chirality is a geometric feature of molecular structure: chiral molecules are different
from their specular images [105]. This feature can be due to the spatial order of bond-
ing between atoms or in the relative position of groups of atoms in molecules. The
former is linked to the configuration of molecules (configurational chirality), while
the latter is a consequence of the molecular conformation (conformational chirality).
The two specular forms are called enantiomers. Transformation of configurational
enantiomers in each other needs the breaking and re-making of chemical bonds (or
equivalent processes), while in the case of conformational enantiomers this needs
only rotations around some bonds. As a consequence configurational enantiomers are
generally more stable than conformational ones.

The fact that enantiomers are differing only in their orientations in 3D space results,
that interatomic distances in these species are strictly equal and therefore their energies
are also equal with the exception of the contribution of the asymmetry of weak nuclear
forces (WNF). According to the present state of our knowledge the WNF contribution
is negligible. As a consequence of this situation there is no energy driven priority for
the formation of one or other enantiomer if such chiral molecules are prepared from
achiral precursors. In mathematical terms one can say, that the formation probabil-
ity of enantiomers is strictly equal. This fundamental feature of chiral molecules is
known since more than a century [110].

The energetic equivalence of enantiomers raises two very important problems. One
of these is of theoretical nature and is linked to the fact that all terrestrial living
organisms are using exclusively or in overwhelming excess only one form of chi-
ral molecules in these organisms (“biological chirality” [67,107,108]. The origin of
this phenomenon is one of the most prominent challenges of biochemistry today. The
other problem is of highly practical nature: in chemical industry (pharma, polymers,
etc.) it would be highly desirable to prepare pure enantiomers from achiral precursors.
Such syntheses are today realized by using asymmetric physical fields (e.g. circu-
larly polarized light) or chiral additives (“auxiliaries”). For several practical reasons
it would be very important to realize these syntheses without these “helping hands”.
Such synthesis, called absolute asymmetric synthesis, would be the dream of all
preparative chemists working on the synthesis of pure enantiomers of chiral mole-
cules. For the moment only two examples of such synthesis are known, the addition
of dialkylzinc compounds to N -heterocyclic aldehydes, (alkylation of N-heterocyclic
(pyrimidyl) aldehydes by diisopropyl zinc) the Soai reaction [133–142], and the prep-
aration of a chiral cobalt(III) complex cis−[CoBr(NH3)(en)2]2+, from the reaction
of trinuclear mixed valence [Co(H2O)2]{(OH)2Co(en)2}2]4+ with NH4Br in aqueous
solution [6].

It has been shown recently, that absolute asymmetric synthesis by the Soai reaction
is inherently linked to the stochastic behavior of the first few molecules in the achiral to
chiral transformation leading to high enantiomeric excesss without any chiral additive
or application of any asymmetric physical field [9–11].

The stochastic aspects of the Soai synthesis will be discussed in detail later in the
present review.
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The energy (and formation probability) equivalence of enantiomers leads to the
formation of 1:1 mixtures of the two forms in achiral to chiral transformations. These
mixtures, called racemates, were fairly neglected by chemical literature as “unde-
sired” products. One should realize, however, that racemates are not achiral chemical
substances, in the strictest sense of the word, but only (physical) mixtures of two
asymmetric molecule kinds. This again leads to important stochastic considerations
and requires a re-evaluation of the concept of racemates [21,109]. The stochastic prob-
lems emerging from the modern view of racemates will be also discussed later in this
review.

We emphasize that we are interested in the dynamics of chirality, even if we speak
about the stationary state or stationary distribution of a process, and not in the structural
description of static chirality, i.e. not in analyzing the geometric form of the molecules
themselves, which is, however, an important topic in itself, see e.g. [79] and also the
papers in [95].

2.2 Autocatalysis

There are a lot of definitions of autocatalysis. Bazsa and Beck [15] has collected and
presented a few heuristic definitions. According to Blackmond [17] autocatalysis is
present if the reaction products serve as catalyst to produce more of themselves.

Supercatalysis: autocatalysis of order higher than 1 [101].
An appropriate definition should not be based on a specific, say, deterministic or

standard stochastic model, but on the mechanism of the reaction.

2.3 Multi- and bistability

The deterministic model of the simplest reactions have the property that there is a
single stationary state (concentration vector), and no matter how the reaction starts,
the concentration vs. time functions finally evolve to this stationary state: one has an
asymptotically stable stationary state. In the last decades, more complex phenomena
were discovered and investigated, such as oscillation, chaos, spatial patterns, in one
word exotic phenomena [39,116]. Of all these interesting phenomena we are here
interested in cases where more than one stationary state exists, and depending on the
initial concentration one or the other enantiomer can be attained: this is the case of
multistability, see e.g. [112,123].

Hou and Xin [59] show a specific example that internal noise can induce chemical
oscillations in a parameter region subthreshold to deterministic oscillatory dynamics.
Coupling may enhance the effects. Such systems are highly relevant to the evolution
of enantiomeric excess without physical or chemical auxiliary.

2.4 Multimodality

If one has a stochastic model (of any kind) then chirality can be formulated by hav-
ing a probability distribution or probability density function which has two maxima,
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corresponding to each of the enantiomers. Sufficient conditions for multimodality of
the stationary distribution in the standard stochastic model has been given by Érdi et
al. [40]. The questions are: How such a multimodal (time dependent or stationary) dis-
tribution emerges, survives, how can it be characterized etc. A fundamental reference
on multimodality is [93].

Definition 1 The distribution {pn}n∈Z is said to be unimodal (at a) if n �→ pn− pn−1
becomes negative for the first time at a+1. The point (a, pa) is the peak of the graph
of the distribution.

A few conditions to ensure uni- or multimodality in the standard stochastic model of
reactions have been given in [58]. Even the definition is not trivial in the multispecies
case.

3 Models

3.1 The mass action type deterministic model of homogeneous reaction kinetics

Usually functions wr ∈ C1(RM , R) called kinetics are given to represent the reac-
tion rate of the r th reaction step. With all these data the induced kinetic differential
equation of the reaction (1) is

ċm(t) = fm(c(t)) :=
R∑

r=1

(β(m, r)− α(m, r))wr (c(t)) (m = 1, 2, . . . , M), (2)

where cm(t) is the concentration of X (m) at time t : cm(t) := [X (m)](t). Sometimes
we are also interested in the initial value problem related to this equation. The most
important special case is the case of mass action type kinetics when we have

wr (c) = kr

M∏

p=1

cα(p,r)
p = kr cα(·,r) (w(c) = diag(k)cα = k⊗ cα) (3)

with the positive numbers kr , (r = 1, 2, . . . , R) called reaction rate coefficients.
(The operation ⊗ denotes the product taken by coordinates.)

Example 1 Consider the simple inflow O −→ X. Here M = R = 1, α = 0, β =
1, k = λ. The mass action type induced kinetic differential equation of this reaction
is:

ẋ = λ. (4)

Example 2 Consider the first order irreversible autocatalytic reaction X −→ 2X.

Here M = R = 1, α = 1, β = 2, k = (k1, k2). The mass action type induced kinetic
differential equation of this reaction is:

ẋ = k1x − k2x . (5)
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Example 3 Consider the second order (or: quadratic) irreversible autocatalytic reac-
tion 2X −→ 3X. Here M = R = 1, α = 2, β = 3, k = k. The mass action type
induced kinetic differential equation of this reaction is:

ẋ = kx2 (6)

having the property that the maximal solution blows up in a finite time [32].

Example 4 Consider the well-known Michaelis–Menten reaction E+ S←→ C −→
P. Here M = 4, R = 3, k = (k1, k−1, k2), and

α =

⎡

⎢⎢⎣

1 0 0
1 0 0
0 1 1
0 0 0

⎤

⎥⎥⎦ β =

⎡

⎢⎢⎣

0 1 0
0 1 0
1 0 0
0 0 1

⎤

⎥⎥⎦ .

The mass action type induced kinetic differential equation of this reaction is (see [96],
[39] p. 178):

ė = −k1es + k−1c ṡ = −k1es + k−1c
ċ = +k1es − (k−1 + k2)c ṗ = +k2c

Example 5 Consider the Gray model [88] with second order autocatalysis: A+B −→
2B, B −→ 0, A←→ 0←− B. Here M = 2, R = 5, k = (k1, k2, ν, νa0, ν), and

α =
[

1 0 1 0 0
1 1 0 0 1

]
β =

[
0 0 0 1 0
2 0 0 0 0

]
.

The induced kinetic differential equation of this reaction is:

ȧ = ν(a0 − a)− k1ab ḃ = k1ab − (k2 + ν)b.

3.1.1 Bistability in the deterministic model

Usual beliefs on bi- and multistationarity and oscillation in deterministic models are
critically analyzed in [150].

3.1.2 Deterministic models of chirality

The simplest model comes from [42], see also [73,80,85,130]. Here we present it in
a slightly different way (having in mind the stochastic model):

A
1
2 k1−→R, A

1
2 k1−→S, A + R

k2−→2R, A + S
k2−→2S. (7)
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The induced kinetic differential equation to describe this reaction is

a′ = −k1a − k2a(r + s), r ′ = k1

2
a + k2ar, s′ = k1

2
a + k2as (8)

with the initial conditions

a(0) = a0, r(0) = r0, s(0) = s0. (9)

As one has a(t)+ r(t)+ s(t) = a0 + r0 + s0, the system can easily be solved to get

a(t) = a0k3

k2a0 + (k3 − k2a0)ek3t

r(t) = k3

(
k1

2k2
+ r0

)
ek3t

k2a0 + (k3 − k2a0)ek3t
− k1

2k2

s(t) = k3

(
k1

2k2
+ rs0

)
ek3t

k2a0 + (k3 − k2a0)ek3t
− k1

2k2

with m0 := a0 + r0 + s0, k3 := k1 + k2m0. Therefore the stationary enantiomeric
excess can be calculated as

lim
t→+∞

r(t)− s(t)

r(t)+ s(t)
= (r0 − s0)(k2(a0 + r0 + s0)+ k1)

(a0 + r0 + s0)(k1 + k2(r0 + s0))
(10)

while Shao and Liu [130] gives the result with a slight error:

lim
t→+∞

r(t)− s(t)

r(t)+ s(t)
= (r0 − s0)(k2(a0 + r0 + s0)+ k1)

(r0 + s0)(k1 + k2(r0 + s0))
. (11)

However, their final qualitative conclusion (see also [73,104]) is correct: the stationary
enantiomeric excess is always smaller than the initial one. To put it in another way:
autocatalytic reaction (7) is unable to amplify the enantiomeric excess according to
the deterministic model Figs. 1, 2.

Kondepudi and Nelson [72] introduces a more complicated model

A+B−→R, A+B−→S, A+B+R−→2R, A+B+S−→2S, R+S−→P

which is also used by Markó [89]. Markó also states (without explicit calculations)
that starting from small equal initial conditions the quantities of the two enantiomers
remain the same for very long times. However, starting from larger initial concentra-
tions small differences will be amplified and a stable stationary state with different
quantities emerges.

The deterministic model of the seemingly simple reaction [144]

A + R
k1�
k3

2R, A + S
k1�
k3

2S, R + S
k2−→P
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Solution, Trajectory, Sol. coordinate
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Fig. 1 Solution, coordinate functions and trajectories of the simplest Frank model (7). k1 = 1, k2 =
10, a0 = 0.1, r0 = 0.01, s0 = 0.03

Fig. 2 Enantiomeric excess in
the Frank model (7). Data are
the same as in Fig. 1
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as a function of time

does not seem to be symbolically solvable. However, as a and a + r + s are monoto-
nously decreasing and bounded from below they have a limit as t →+∞. Numerical
calculations also suggest that the concentration vs. time curves behave in a similar
way as in the model (7), still enantiomeric excess in this reaction might increase.
More precisely, as Gutman [53] put it, three distinct time-evolutions of the modified
Frank model can occur, one in which both S and R completely disappear from the
system, another leading to complete monochirality, and a third resulting in a racemic
final state.

The reaction proposed by Blackmond [17,18] is even more complicated, although
much less (neither symbolically, nor numerically, only intuitively, using traditional
arguments of quasistationarity) analyzed in detail:

R + R
Khomo� R2, S + S

Khomo� S2, R + S
Khetero� RS,

A + Z + R2
kcat−→R2 + R, A + Z + S2

kcat−→S2 + S.
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She also defines enantiomeric excess in a slightly different way: ee(t):= r2(t)−s2(t)
r2(t)+s2(t)+rs(t) .

She emphasizes the importance of catalytic effects of dimers, and obtains quite a good
agreement with experimental data. a(0) = 0.2, z(0) = 0.4, Kdimer := Khetero

Khomo
= 4.

Finally we mention here that [98] constructed a simple model to show bistability,
and fitted it to the data obtained by the Soai group.

3.2 Stochastic processes

Almost all relevant definitions can be found in Wikipedia, but a relatively easy-to-read
classic summary is [60].

3.2.1 Definition of stochastic processes

Definition 2 A stochastic process is a collection of random variables {X (t), t ∈ T }
defined on the same probability space. The set T is called its parameter set, its ele-
ments usually represent time, whereas the state space S is the set of possible outcomes
of the stochastic process.

Definition 3 The mapping t �→ X (t, ·) defined on the parameter set T, is called a
realization or the sample path of the process. (The name trajectory is also used, but
it may cause misunderstanding, because in the case of deterministic models this term
is used differently.)

3.2.2 Time and state space

Stochastic processes can be divided into four categories depending on

• whether the values assumed by the time parameter are discrete or continuous.
• whether the values assumed by the random variables are discrete or continuous,

According to these, the categories are as follows:

DDS: Discrete time, discrete state stochastic processes If the values of the time
parameter are discrete (i.e. they belong to a finite or to a countable set), and the assumed
parameter values ti , (i = 1, 2, ...) form an increasing sequence, then {X (ti )} is called
a random sequence. If the process is Markovian (see point 3.2.3) and the state space
is discrete, then it is said to be a Markov chain.

CDS: Continuous time, discrete state stochastic processes Here X (t) assumes only
discrete values as above, and the time parameter assumes a continuous range of values
in (−∞,+∞). If the process is Markovian, it is called a continuous time Markov
chain. The standard stochastic model of reactions belongs to this class, with R as the
set of times, and N

M as the set of states, where M is the number of chemical species.

DCS: Discrete time, continuous state stochastic processes In this case, X (t) assumes
a continuous range of values and t assumes discrete values. If the process is Markovian,
it is called a discrete time Markov process.
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CCS: Continuous time, continuous state stochastic processes In this process, both
X (t) and t assume continuous ranges of values. If the process is Markovian, it is called
a continuous time Markov process.

3.2.3 Nature of determination

Stationary processes A stochastic process is called a stationary process if the joint
probability distributions do not change when shifted in time. Formally, let X (t) be a
stochastic process and let FXt1 ,...,Xtk

(xt1 , . . . , xtk ) represent the cumulative distribu-
tion function of the joint distribution of X (t) at times t1, . . . , tk . Then, X (t) is said to
be stationary if, for all k, τ , and for all t1, . . . , tk,

FXt1 ,...,Xtk
(xt1 , . . . , xtk ) = FXt1+τ ,...,Xtk+τ (xt1 , . . . , xtk ). (12)

Weakly stationary processes A weaker form of stationarity is known as weak sense
stationarity, wide-sense stationarity (WSS) or covariance stationarity. This only
requires that the 1st and 2nd moments do not vary with respect to time. Any strictly
stationary process which has a mean and a covariance is also weakly stationary.

Independent processes A discrete space, discrete time stochastic process or a random
sequence {Xn} is an independent process if the joint density function can be written
as a product of the density functions of each variable Xn, (n = 1, 2, . . .):

fX1,...,Xn (x1, . . . , xn; t1, . . . , tn) = fX1(x1; t1) · · · fXn (xn; tn). (13)

White noise process A random vector X is said to be a white random vector if its
mean vector and autocorrelation matrix are the following:

E{X} = 0 RX = E{XX	} = σ 2I. (14)

That is, it is a zero mean random vector, and its autocorrelation matrix is a multiple of
the identity matrix. When the autocorrelation matrix is a multiple of the identity, we
say that it has spherical correlation. A continuous time random process X(t) where
t ∈ R is a white noise process if its mean function and autocorrelation function satisfy
the following:

mX(t) := E{X(t)} = 0 RX(t1, t2) = E{X(t1)X(t2)
	} = N0

2
δ(t1 − t2). (15)

i.e. X(t) is a zero mean process and has infinite power at zero time shift since its
autocorrelation function is the Dirac delta function.

Processes with independent increment Let us denote again a continuous time sto-
chastic process by X (t). The increments of such a process are the differences X (s)−
X (t) between its values at different times t < s. To call the increments of a process
independent means that increments X (s) − X (t) and X (u) − X (v) are independent
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random variables whenever the two time intervals [t, s] and [v, u] do not overlap and
more generally, any finite number of increments assigned to pairwise non-overlapping
time intervals are mutually (not just pairwise) independent.

Markov processes We start to discuss the Markov processes with the simplest case:
the discrete time, discrete state processes, usually called Markov chains.

DDS Markov chains

Definition 4 The sequence of random variables X1, X2, . . . Xn, . . . form a Markov
chain if for every n (n = 1, 2, . . .) the random variables satisfy the following equa-
tion:

P(Xn = j |X1= i1, X2= i2, . . . , Xn−1= in−1)= P(Xn = j |Xn−1= in−1). (16)

It means that the probability of the state at time n depends only on the state at
time n − 1 and does not depend directly on the former states: future depends on the
past only through present. Usually we say that the Markov chain has no memory.
The probabilities pi j = P(Xn = j |Xn−1 = i) are called the one step transition
probabilities. These tell us what is the probability of the Markov chain going from
the state i into the state j in one step. In the special case when the one step transition
probabilities do not depend on n the Markov chain is called (time-)homogeneous.

We can define the m-step transition probabilities in the homogeneous case as
follows:

n pm
i j = P(Xn+m = j |Xn = i). (17)

From now on we speak only about homogeneous Markov chains, then we can use the
shorter notation pm

i j for the m-step transition probabilities.
One can easily prove from (16) Markov property that

pm
i j =

∑

k

pm−l
ik pl

k j (m = 2, 3, . . .) (18)

for any l such that 0 < l < m. Equation (18) is a special case of the Chapman–
Kolmogorov equation, see (22) for the case when time is restricted to change dis-
cretely.

Consider a homogeneous Markov chain with a finite state space. The transition prob-
ability distribution can be represented by a matrix, called the transition probability
matrix: P = [pi j ]. Since each row of P sums to one and all elements are non-negative,
P is a (right) stochastic matrix. If the Markov chain is time-homogeneous, then the
transition matrix is the same after each step, so the k-step transition probability can
be calculated as the k-th power of the transition matrix, Pk .

A probability distribution π is called a stationary distribution if it satisfies the
equation π = πP. In other words, the stationary distribution π is a normalized (mean-
ing that the sum of its entries is 1) left eigenvector of the transition matrix associated
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with the eigenvalue 1. Alternatively, π can be viewed as a fixed point of the linear
(hence continuous) transformation on the unit simplex associated to the matrix P.

As any continuous transformation on the unit simplex has a fixed point, a stationary
distribution always exists, but it is not guaranteed to be unique, in general. However,
if the Markov chain is irreducible and aperiodic (see page 13), then there is a unique
stationary distribution. Additionally, in this case Pk converges to a rank-one matrix in
which each row is the stationary distribution, that is, limk→+∞ Pk = 1π , where 1 is
the column vector with all entries equal to 1, and a dyadic product can be seen on the
right hand side.

State j is said to be accessible from state i (written i → j) if a system started in
state i has a non-zero probability of passing into state j at some point. Formally, state
j is accessible from state i if there exists an integer n > 0 such that P(Xn = j |X0 =
i) = pn

i j > 0. A Markov chain is said to be irreducible if it is possible to reach any
state from any state.

A state i has period k if any return to state i must occur in multiples of k time steps.
Formally, the period of a state is defined as k = gcd{n : P(Xn = i |X0 = i) > 0}
(where gcd is the greatest common divisor). Note that even though a state has period k,
it may not be possible to reach the state in k steps. For example, suppose it is possible
to return to the state in {6, 8, 10, 12, . . .} time steps; then k would be 2, even though
2 does not appear in this list.

If k = 1, then the state is said to be aperiodic, i.e. it returns to state i can occur at
irregular times. Otherwise (k > 1), the state is said to be periodic with period k. A
Markov chain is said to be aperiodic if all its states are aperiodic.

A state i is said to be transient if, given that we start in state i , there is a non-zero
probability that we will never return to i . Formally, let the random variable Ti be the
hitting time, i.e. the first (earliest) return time to state i : Ti = inf{n ≥ 1 : Xn =
i |X0 = i}. Then, state i is transient if and only if P(Ti = +∞) > 0. If a state i is not
transient (it has a finite hitting time with probability 1), then it is said to be recurrent
or persistent. Even if the hitting time is finite, it needs not have a finite expectation.
Let Mi be the expected return time, Mi := E{Ti }. Then, state i is positive recurrent
if Mi is finite; otherwise, state i is null recurrent (the terms non-null persistent and
null persistent are also used, respectively).

It can be shown that a state is recurrent if and only if
∑+∞

n=0 pn
ii = +∞. An irreduc-

ible Markov chain has a stationary distribution if and only if all of its states are positive
recurrent. In that case, π := (π1, π2, . . .) is unique and is related to the expected return
time: πi = 1

Mi
. Further, if the chain is both irreducible and aperiodic, then for any i and

j, limn→+∞ pn
i j = 1

M j
. Note that there is no assumption on the starting distribution;

the chain converges to the stationary distribution regardless of where it begins. Such
π is called the equilibrium distribution of the chain.

A state i is called absorbing if it is impossible to leave this state. Therefore, the
state i is absorbing if and only if pii = 1 and pi j = 0 for i �= j.

A state i is said to be ergodic if it is aperiodic and positive recurrent. If all states
in a Markov chain are ergodic, then the chain is said to be ergodic. It can be shown
that a finite state irreducible Markov chain is ergodic if its states are aperiodic.
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Now, we reformulate the definition (16) for continuous time, discrete state Markov
processes as follows.

CDS Markov processes

Definition 5 A stochastic process {X (t)}t∈R is a continuous time Markov process
if for every t1 < t2 < · · · < tn+1 the equation

P (X (tn+1) = j |X (t1) = i1, X (t2) = i2, . . . X (tn) = in) (19)

= P (X (tn+1) = j |X (tn) = in) (20)

holds, where n is a positive integer.

One can recognize that Eq. (19) is similar to Eq. (16), thus many properties of the
continuous time Markov process is similar to the Markov chain. From now on we
restrict our investigations to continuous time, discrete state Markov processes, and we
also assume that the states of the processes can only be natural numbers. (This is not
so with the applications, however.)

Let τi denote the time that the process spent in the state i. According to the Markov
property (19) it does not depend on the past of the process, so we can write:

P (τi > s + t |τi > s) = h(t) (21)

where h(t) only depends on the remaining (present and future) time t and not on the
past time s. The only continuous probability distribution which satisfies the Eq. (21)
is the exponential distribution. This is called as the memorylessness property of the
Markov process. (In the discrete time case requirement (21) leads to the geometric
distribution.)

Evolution Equations for CDS Markov Processes

Chapman–Kolmogorov Equation We have already defined the probability of
m-step transition (17) for a homogenous Markov chain. One can define for non-
homogenous Markov chain as follows: pi j (m, n) = P(Xn = j |Xm = i). In a
similar way we define the transition probability for the continuous time Markov
chain: pi j (s, t) = P (X (t) = j |X (s) = i) . It means that the process is in the state
X (t) at epoch t and s � t. From this expression one can derive the Chapman–
Kolmogorov equation:

pi j (s, t) =
∑

k

pik(s, u)pkj (u, t) (i, j = 0, 1, 2, . . .) (22)

Let us define the transition probability matrix: H(s, t) := [pi j (s, t)], and let
H(t, t) = I be the identity matrix. Using this notation the (22) Chapman-
Kolmogorov equation becomes

H(s, t) = H(s, u)H(u, t) s � u � t. (23)
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If the transition probabilities satisfy some continuity conditions then they also
satisfy a certain system of differential equations, of which the first one is the
Kolmogorov forward equations.
Kolmogorov Forward Equation We get these equations from the (22) Chapman–
Kolmogorov equation if we follow the probability of the trajectory starting from
the state i at the epoch s through the state k at the epoch t to the state j at the epoch
t + h. The continuity conditions are as follows.

1. For every state j there exist functions t �→ c j (t) � 0 such that

lim
h→0

1− P(t, t + h, j, j)

h
= c j (t) for every t � 0. (24)

2. For every pair of states j and k, j �= k and for all epoch t there exist continuous
functions t �→ q jk(t) such that

lim
h→0

P(t, t + h, j, k)

h
= c j (t)q jk(t) ( j �= k), (25)

where the functions c j are the same as in (24). Furthermore,

∑

k

q jk(t) = 1 and q j j (t) = 0 for every t � 0.

3. In the condition (25) convergency is uniform in k for every fixed j and epoch
t � 0.

Theorem 1 (Kolmogorov forward equations) If the transition probabilities

P(s, t, i, j) := P (X (t) = j |X (s) = i)

of the CDS Markov process X (t) t � 0 with states 1, 2, . . . satisfy the three con-
ditions above, then

∂ P(s, t, i, j)

∂t
= −c j (t)P(s, t, i, j)+

∑

k

P(s, t, i, k)ck(t)qk, j (t). (26)

Kolmogorov Backward Equation To derive the Kolmogorov backward equations
we need two conditions, similar to (24) and (25):

1. For every state j there exist functions t �→ c j (t) � 0 such that

lim
h→0

1− P(t − h, t, j, j)

h
= c j (t) for every t � 0. (27)
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2. For every pair of states j and and k, j �= k and for all epoch t there exist
continuous functions t �→ q jk(t) such that

lim
h→0

P(t − h, t, j, k)

h
= c j (t)q jk(t)( j �= k), (28)

where the functions c j are the same as in (27). Furthermore,

∑

k

q jk(t) = 1 and q j j = 0 for every t � 0.

Notice that here we do not need a third condition.

Theorem 2 (Kolmogorov backward equations) If the transition probabilities of
the CDS Markov process X (t) t � 0 satisfy the conditions (27)–(28), then

∂ P(s, t, i, j)

∂s
= cs(t)P(s, t, i, j)−

∑

k

P(s, t, k, j)qi,k(s). (29)

Master equation Let us introduce the absolute probabilities Pi (t) := P(X (t) =
i) of a CDS Markov process, i.e. the probabilities for the system to be in the state
i. Although these quantities do not describe fully the time evolution of a stochastic
process, still these are very often the most preferred characteristics of CDS Markov
processes, especially in physical and chemical applications. An easy consequence
of the Kolmogorov backward equations follows.

Theorem 3 (Master equation) Under the conditions (27–28) we have

dPi (t)

dt
=

∑

j

qi j (t)Pj (t), (30)

where the matrix qi j is filled with a grid of transition rates (infinitesimal transition
probabilities).

Note that because
∑

i qi j (t) = 0 (i.e. probability is conserved), therefore the equa-
tion may also be written as

dPi (t)

dt
=

∑

j

(qi j (t)Pj (t)− q ji (t)Pi (t))

allowing us to omit the term j = i from the summation. Thus, in the latter form of
the master equation there is no need to define the diagonal elements of q.

Let us see a few special cases of Markov processes with continuous time and discrete
state space.
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Example 6 (Birth-and-Death Process) Let us suppose that a population with size
i the probability of one birth approximately λi h and the probability of one death
approximately μi h during a short period of time h. The size of the population is a
birth-and-death process. More precisely,

Definition 6 A continuous time Markov chain X (t)t � 0 is a birth-and-death
process with parameters λ0, λ1, . . . and μ0, μ1, . . . if the transition probabilities sat-
isfy the following conditions:

P(t, t + h, i, i + 1) = λi h + o(h),

P(t, t + h, i, i − 1) = μi h + o(h), (31)

P(t, t + h, i, i) = 1− (λi + μi )h + o(h), and

P(t, t + h, i, j) = o(h), if j �= i, and j �= i ± 1, h→ 0.

Because the birth-and-death process is a special CDS Markov process one can get the
special form of the master equation. If Pn(t) stands for the probability of the process
in the state n at time t then

P ′0(t) = −λ0 P0(t)+ μ1 P1(t) and

P ′n(t) = −(λn + μn)Pn(t)+ λn−1 Pn−1(t)+ μn+1 Pn+1(t) if n � 1. (32)

Similarly we can write the Kolmogorov backward equation:

P ′(t, i, j) = −(λi + μi )P(t, i, j)+ λi P(t, i + 1, j)+ μi P(t, i − 1, j). (33)

Example 7 (Poisson Process) A continuous time discrete state process N (t) is called
Poisson Process if it satisfies the following three properties:

1. It starts at zero: N (0) = 0.

2. It has independent, stationary increments.
3. For every t > 0, N (t) is a Poisson random variable with parameter λt :

P (N (t) = n) = (λt)n

n! e−λt , n = 0, 1, 2, . . . (34)

First of all it is easy to see that the Poisson process is a pure birth process i.e. if

λi = λ and μi = 0 for i = 0, 1, 2, . . .

then Eq. (32) reduces to:

P ′n(t) = −λ(Pn(t)− Pn−1(t)). (35)

The solution of Eq. (35) is exactly given by (34).
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Fig. 3 Return probability of a
d-dimensional random walk as a
function of d
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Example 8 (Random walk) Let us denote by Gd the points of a d-dimensional lattice.
Position of a point at time t = n denoted by Sd

n . The point changes its position such
that one of its coordinate will be changed by ±1 with probability 1

2d and all the other
d − 1 coordinates remain unchanged.
If Xd

k stands for the shift in the time interval (k − 1, k) then

Sd
n = Sd

0 +
n∑

k=1

Xd
k .

The Xd
k are independent identically distributed random variables hence Sd

n is a Markov
process.

Theorem 4 [115] Let P(d) be the probability that a random walk on a d-dimensional
lattice returns to the initial posit ion. Then, P(1) = P(2) = 1 but P(d) < 1 for any
d � 3. Moreover, the probability that a random walk on a d-dimensional lattice infi-
nite many times returns to the initial position equals 1 for d = 1 and d = 2 but equals
0 for d � 3.

The following table shows some approximate values of P(d):

Dimension Probability
3 0.340537
4 0.193206
5 0.135178
6 0.104715
7 0.0858449
8 0.0729126

Example 9 Finally, we mention that of the processes described above independent
processes and processes with independent increments are also Markovian processes,
both can have discrete and continuous state space, as well Fig. 3

CCS Markov Processes An analogue of the master equation (30) is the Fokker–
Planck equation which describes the time evolution of the probability density func-
tion of the position of a particle undergoing Brownian motion in a fluid.
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In one spatial dimension the Fokker–Planck equation for a process with drift
D1(x, t) and diffusion D2(x, t) is

∂

∂t
f (x, t) = − ∂

∂x

[
D1(x, t) f (x, t)

]
+ ∂2

∂x2

[
D2(x, t) f (x, t)

]
.

More generally, the time-dependent probability distribution may depend on a vector
x of N macrovariables xi . The general form of the Fokker–Planck equation is then

∂ f (x, t)

∂t
= −

N∑

i=1

∂

∂xi

[
D1

i (x) f (x, t)
]
+

N∑

i=1

N∑

j=1

∂2

∂xi ∂x j

[
D2

i j (x) f (x, t)
]
, (36)

where D1 is the drift vector and D2 the diffusion tensor; the latter results from the
presence of a random force.

Let us see a few examples of CCS Markov processes.

Example 10 (Wiener process)

Definition 7 A CCS process Wt is called Wiener process if it satisfies the following
three conditions:

1. W0 = 0,

2. Wt is almost surely continuous,
3. Wt has independent increments with normal (Gaussian) distribution i.e.

Wt −Ws ∼ N (0, t − s).

Here N (μ, σ 2) denotes the normal distribution with expected value μ and variance
σ 2. The Wiener process plays a key role in describing a random movement what is
known as Brownian motion.

The basic properties of the Wiener process:

1. The expectation is zero: E(Wt ) = 0.

2. The variance is t : E(W 2
t )− E2(Wt ) = t.

3. Its covariance and correlation are:

cov(Ws, Wt ) = min(s, t) corr(Ws, Wt ) = min(s, t)√
st
=

√
min(s, t)

max(s, t)
.

4. The unconditional probability density function at a fixed time t is: fWt (x) =
1√
2π t

e− x2
2t .

Example 11 (Langevin Equation) In statistical physics, a Langevin equation is a sto-
chastic differential equation describing Brownian motion of charged particles in a
potential.

The first Langevin equations to be studied were those in which the potential is
constant, so that the acceleration a of a Brownian particle of mass m is expressed
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Fig. 4 Classification of stochastic processes. SM P Semi-Markov process (pi j arbitrary, Fτ arbitrary);
M P Markov process (pi j arbitrary, Fτ memoryless); B D P birth-and-death process (pi j = 0 if |i− j | > 1
Fτ memoryless); P B P pure birth process (μi = 0 Fτ memoryless); RW random walk (pi j = q j−i , Fτ

arbitrary ); RN P renewal process (q1 = 1, Fτ arbitrary ); P P poisson process (λi = λFτ memoryless)

as the sum of a viscous force which is proportional to the particle’s velocity v (by
Stokes’ law), a noise term η(t) (the name given in physical contexts to terms in sto-
chastic differential equations which are stochastic processes) representing the effect
of a continuous series of collisions with the atoms of the underlying fluid, and F(x)

which is the systematic interaction force due to the intramolecular and intermolecular
interactions:

ma(t) = m
dv(t)

dt
= F(x(t))− βv(t)+ η(t).

In the simplest case, the solution is an Ornstein–Uhlenbeck process, see [103], or [60,
p. 294].

Semi-Markov Process A semi-Markov process is a process that may change states
any time (it is a continuous time process) and the waiting times between the changes
are not necessary exponentially distributed as it happens for the Markov process. A
continuous time Markov chain (CTMC) is a special case of a semi-Markov process in
which the transition times are exponentially distributed as we have seen in (21).

Renewal processes Let T1, T2, . . . ; Ti > 0 for i = 1, 2, . . . be a sequence of inde-
pendent identically distributed random variables. We refer to the random variable Ti

as the i th holding time. By definition, for each n > 0Jn := ∑n
i=1 Ti and J0 := 0

is referred to as the nth jump time. The process Nt := sup
{
n : Jn � t

}
is called a

renewal (counting) process.

Example 12 If the random variables Ti are exponentially distributed with parameter
λ, then Nt is a Poisson process with parameter λ Fig. 4.

Pólya’s Urn Model In early twentieth century, Pólya proposed and analyzed the fol-
lowing model known as the Pólya urn model [34]. Suppose we have an urn with r red
balls and s smaragdite balls. At each step i , we pick a ball uniformly at random from
the urn and replace it with two balls of the same color.
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The probability of seeing n1 red balls and n2 smaragdite balls after n = n1 + n2
steps is

P(Number of red balls is n1) = n!
n1!n2!

(r + s − 1)!
(r − 1)!(s − 1)!

(r + n1 − 1)!(s + n2 − 1)!
(r + s + n − 1)!

Let x := n1
n , and take the limit for each term,

lim
n→+∞

(r + n1 − 1)!
n1! → nr−1

1 ,

lim
n→+∞

(s + n2 − 1)!
n2! → ns−1

2 ,

lim
n→+∞

(r + s + n − 1)!
n! → nr+s−1,

then the probability of seeing n1 red balls converges to

lim
n→+∞ P(number of red balls is n1) = (r + s − 1)!

(r − 1)!(s − 1)! x
r−1(1− x)s−1

which is a random variable with beta distribution with parameters r and s.
The Pólya urn model can be generalized but at the moment the generalizations do

not seem to have immediate chemical applications.

3.3 The standard stochastic model of homogeneous reaction kinetics

The usual deterministic model of homogeneous reaction kinetics with mass action type
or other type reaction rates is usually quite appropriate to describe chemical kinetic
experiments. However, there are several cases when the both the intrinsic stochasticity
of the reactions, and discreteness of the quantities of the species are to be taken into
consideration.

These cases are when the system is small, i.e. when the number of molecules in the
investigated system is not of the order 1020–1023 (milimol to mol) but much smaller.
For example this is the case if macromolecules are present in a cell. The number of the
molecules in a cell might be a few dozen, or even (DNA) one. If we have such a system
then there might be a large difference between the expectations of the stochastic and
the deterministic models, and this difference does not average out if one has a large
number of cells. A model system to describe this situation is the Michaelis–Menten
reaction with one enzyme molecule [4,74,118,143], or induction of chirality by only
one chiral molecule [23]

Another situation to provide marked differences arises when the system is close to
an unstable stationary point. Here the effect of fluctuations can be enlarged. Actually,
this is the case in some models of chirality [24,109].

The presence of certain structures such as those within a living cell may also require
a stochastic description [153]. In a system confined to a small space it may also happen
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that the diffusion is limited due to crowding. On the effect of spatial heterogeneity see
also [88].

Another type of the situation is when discretization of the physical space in a sto-
chastic reaction-diffusion model (generalization of the standard stochastic model for
the spatially inhomogeneous case) leads to a qualitatively different stationary distri-
bution [146]. Therefore, it is a hard question to decide which model to use to describe
spatial inhomogeneities caused by the presence of intracellular structures.

More generally, any kind of exotic phenomena, such as e.g. oscillation [120], blow
up [32], multimodality [58] etc., may appear in a qualitatively different way in the
deterministic and in the stochastic model, respectively.

Experimental results— to give raison d’etre to stochastic kinetics—showing inher-
ent stochasticity of reactions have been obtained by Nagypál and Epstein [101,102].
These results showed that reaction time of the chlorite-thiosulfate reaction displays
a striking irreproducibility. These authors have also found fluctuation induced tran-
sition. The key contributors to stochasticity are local concentration inhomogeneities
resulting form imperfect stirring and the supercatalytic reaction rate. A quantitative
description of this process has also been given later.

More detailed treatment of these and related (including thermodynamical) problems
can be found in [39, Chapter 5]. See also [16,46,123].

We do not want to give a full historical description of stochastic kinetics, still, we
should mention a few important names. Delbrück [33] investigated the autocatalytic
reaction A+ X −→ 2X which is used to describe the formation of tripsin from tripsi-
nogen. The deterministic and the standard stochastic models are formulated and the
binomial distribution of the latter is approximated by a normal distribution. The distri-
bution of the time at which a given number of particles is attained is also determined.
In the same year [75] provided a general approximation of CDS models with CCS
models.

Rényi [121] was the first to provide a detailed analysis of the standard stochastic
model of a higher than first order reaction. He has shown that the expectation of the
numbers of molecules in a stochastic model is close to the corresponding quantities
in the deterministic model, and the difference is proportional to the reciprocal of the
square root of the number of molecules. (see also [12,100]) Therefore, the relative
error is small, if this number is large, otherwise it is large. He also made a series of
approximations of the distributions of molecule numbers under different conditions.
A direct continuation of his work can be found in [78]. The author carried out the cal-
culations on the standard stochastic model of A + B ←→ C in detail using Laplace
transforms. His results correspond to the work of Kurtz [76].

The above phenomena only show why it is necessary to use stochastic models. It
is also possible recently, because of the development of measurement techniques, see
e.g. [41,160].

The publication of Feher and Weissman [41] is an early paper on the possibility
of measurement of intrinsic stochasticity of reactions. The kinetic parameters of the
dissociation reaction of beryllium sulfate were obtained from analysis of the frequency
spectrum of the fluctuations in the concentrations of the reactants. In fluctuation spec-
troscopy, no external perturbation is applied and the system remains in macroscopic
chemical equilibrium during the experiment. Results obtained by this method agree
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well with those obtained by relaxation methods. Noise originating from a source
different from the chemical reaction was also observed and analyzed. The method of
fluctuation spectroscopy should be applicable to other problems of physical, chemical,
and biological interest, too.

3.3.1 Evolution equations of the time dependent characteristics of reactions

The usual stochastic model of (1) is a CDS Markov process or a Markovian pure jump
process X with the state space N

M
0 and with the transitions

n −→ n + β(·, r)− α(·, r).

The (infinitesimal) probabilities of these transitions in the interval ]t, t + h[ are
as follows: kr (n)α(·,r)h + hε(h), where (n)α(·,r) := ∏M

m=1 nm(nm − 1) . . . (nm −
α(m, r)+ 1), and lim0 ε = 0. The above assumptions also mean that the state vec-
tor of the process stays constant for an exponentially distributed time (the parameter
of this distribution being

∑R
r=1 kr (n)α(·,r)) and then it jumps to another state. The

probability of choosing state n + δ is proportional to

∑

r :β(·,r)−α(·,r)=δ
kr (n)α(·,r).

One can easily write down the Kolmogorov backward and forward equations for the
transition probabilities, and also the master equations for the absolute probabilities a
Pn(t) := P(X(t) = n):

Ṗn = −
R∑

r=1

kr (n)α(·,r) Pn +
R∑

r=1

kr (n − β + α)α(·,r) Pn−β+α . (37)

Although the absolute probabilities do not determine the behavior of the process in
the strict mathematical sense, from the practical points of view it is generally enough
to start from these. We can also have the equation for the stationary distribution π .

R∑

r=1

kr (n)α(·,r)πn =
R∑

r=1

kr (n − β + α)α(·,r)πn−β+α . (38)

There is a generally accepted view that the stationary distribution is necessar-
ily Poissonian. However the situation is that it is an exception [149] rather than a
rule [151,159]. Recently, an interesting connection has been discovered between the
deterministic and the stochastic models. It turned out that a sufficient condition of the
existence of product form stationary distribution is complex balancing, a property also
implying the regular behavior of the deterministic model [3].
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The equation for the generating function is also very useful: Let G(t, z) :=∑
n Pn(t)zn, then

∂0G(t, z) =
R∑

r=1

kr (zβ(.,r) − zα(.,r))∂α(.,r)G(t, z) G(0, z) = zD, (39)

where D ∈ N
M is the initial number of the species. One can deduce easily equations

for the moments, we only cite here the differential equation for the first moment both
because of its usefulness and simplicity:

dE{X(t)}
dt

= E{f K (X(t))}, (40)

where f K is practically the same as the right hand side of the induced kinetic differen-
tial equation. The major difference, however, comes from the fact, that expectation is
taken after application of f K , and not before it. This makes a difference, if the reaction
steps are of the order higher than one.

Example 13 The stochastic model of the simple inflow O −→ X with rate λ is the
Poisson process. Equation (37) in this case goes into (35), and for the generating
function we have

∂0G(t, z) = λ(z − 1)G(t, z) G(0, z) = 1.

Then the equation for the first moment is the same as (4).

Example 14 The stochastic model of the first order autocatalytic reaction X −→ 2X
with outflow X −→ O added is the simple linear birth-and-death process, thus the
master equation is

P ′n(t) = k1(n − 1)Pn−1(t)+ k2(n + 1)Pn+1(t)− (k1 + k2)n Pn(t).

Consequently the equation for the first moment is

dE{X (t)}
dt

= (k1 − k2)E{X (t)},

which is the same as (5).

Example 15 The stochastic model of the supercatalytic (second order) autocatalytic
reaction 2X −→ 3X is the simple quadratic pure birth process, thus the master equa-
tion is

P ′n(t) = k(n − 1)(n − 2)Pn−1(t)− kn(n − 1)Pn(t).
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Explicit solution of the equation shows that the stochastic model stays altogether with
probability 1 in one of the finite states, therefore the model does not blow up, in contrast
to the deterministic one. The equation for the first moment is

dE{X (t)}
dt

= kE{X (t)(X (t)− 1)}
= k(E{X (t)2} − E{X (t)})
= k

[
D

2{X (t)} + E{X (t)}(E{X (t)} − 1)
]

which is different from (6). It has also the property that it is not closed in the sense
that the right hand side also contains the second order moment.

Although it is relatively simple to write down the evolution equations for the stan-
dard stochastic model of chemical reactions, almost nothing can explicitly be calcu-
lated in a symbolic way. The only large class of reactions which can be treated without
approximations is the class of compartmental systems:

Xi−→X j 0−→X j Xi−→0,

a special case of first order reactions. The last two steps describe in- and outflow,
respectively. (The reaction X−→2X is a first order reaction, although it is not a com-
partmental system.) The stochastic models of compartmental systems are beyond the
scope of the present paper but for the readers who are interested in recommended to
see one of the very last papers in this topic: [45], or [39, p. 107].

For other classes approximations and simulation have to be used.

3.3.2 Transient and stationary multimodality in the standard stochastic model
of chemical reactions

Érdi and Tóth [39, pp. 140–142] provides a sufficient condition for the stationary
distribution to be unimodal. The simple example of the van der Pol oscillator shows
that additive noise may cause bimodal stationary distribution, see e.g. [39, pp. 135,
154–156].

Baras et al. [14] have shown on a concrete mechanism of a homogeneous system
that the behavior of the standard stochastic model is closer to the deterministic one
than the description by the Langevin equation in the case when the deterministic one
shows bistability. To read more about this topic see [19] and [43,44].

A class of reactions, generalization of the three species Ivanova reaction sO ←→
Xi , Xi+Xi+1 −→ 2Xi+1 is introduced, and the Langevin equation of the system with
four species is simulated to prove that a certain linear combination of the quantities of
the species shows transient bimodality with appropriate parameter values [145]. Later,
[147] by simulating the standard model discreteness induced first order (as opposed
the known second order) transition and found transient bistability without symmetry
breaking. The authors make a clear distinction between discreteness and stochasticity,
and state that discreteness has not been separately studied. Really, one usually turns
from the CCD model to the CDS model in a single step.
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3.3.3 Approximations

The early classic work by Delbrück [33] contains an approximation of the CDS model
of the simple autocatalytic reaction X−→2X using Gaussian distribution. Different
approximations are given by Rényi [121]. The most important paper on the relation
between the standard deterministic models is [76], again provides an approximation
of the CDS model by Gaussian processes. More precisely, Kurtz considered only
reversible, detailed balanced mechanisms (the most important class of mechanisms
for applications in chemistry), and he has shown that fluctuation of the standard sto-
chastic model around the corresponding quantities in deterministic model is normally
distributed with a variance negligible if the number of particles is as large as in ordinary
circumstances: 1020–1023 particles, corresponding to milimol to mol per liter. Finally,
let us mention that [76] is only a short summary of the results (outlined in a series of
papers full with heavy mathematics) for the chemist.

Goutsias [50] proposes (after so many authors again) the closure of the moment
equations, as a kind of approximation which is always needed if one also has higher
than first order reactions.

Here we mention only two general methods of approximations. One possible
approach has been shown by Zheng and Ross [159]. They numerically solved the
master equation of the quadratic autocatalytic Schlögl reaction for 20–100 particles.
Hellander and Loetstedt [55] combine macroscopic and mesoscopic descriptions to
solve the master equation, then apply simulation.

Lente [80] approximates the Polya distribution with a beta distribution.

3.3.4 Simulation

The simulations are based on the structure of the process and on Doob’s theorem
described above: One has to choose exponentially distributed random variables to
calculate the times between reaction steps, then one has to select a reaction step. Such
a program has been written by Hanusse [54], and Lindbald and Degn [86] for a very
special case, and [38,132] described a general simulation program for this purpose in
the very beginning of the seventies.

Goss and Peccoud [49] provided a general program for simulating stochastic models
of biology, including the standard stochastic kinetic model based on the formulation
of stochastic Petri nets.

Shibata [131] based on recent theoretical and experimental studies states that gene
expression and signal transduction reactions are noisy. In this context one should be
aware of the fact, that “biology” is based on networks of chemical reactions [31,35,47].
Recently, many authors try to accelerate the simulation of the stochastic models. (see
for example [26,30,111,155,157].)

3.3.5 Stochastic models of chirality

The major questions to be described are as follows.

1. How does a difference between the quantities of enantiomers emerge?
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2. Which mechanisms help stabilize and amplify these differences?

Let us consider the standard CDS model of the Frank reaction (7), following [80,
85,130]. First of all, instead of Pa,r,s(t) it is enough to use, say, Pr,s(t), because of
the linear relationships between the variables. The master equation is now:

Ṗr,s = (m0−r−s + 1)

((
1

2
k1 + k2(r−1)

)
Pr−1,s +

(
1

2
k1 + k2(s−1)

)
Pr,s−1

)

−(k1 + k2(r + s))(m0 − r − s)Pr,s (41)

with m0 := a0 + r0 + s0 as before. Then, if one defines the stationary enantiomeric
excess in the natural way: ee := 2r−a0−r0−s0

a0+r0+s0
, one can obtain for the standard deviation

D(ee) of this variable an expression showing that if no autocatalysis is present then
D(ee) ∼ 1√

m0
, a quantity negligible for macroscopic systems. However, if efficient

autocatalysis is present in the system, then spontaneous symmetry breaking occurs.
The limits of sufficient efficiency of autocatalysis was determined by an empirical
equation [97]. This effect is enhanced if the volume is small or if the concentrations
are high. Lente [80] has also given the stationary distribution introducing an intermedi-
ate probability. The stationary distribution is a very special (discrete) beta distribution
which can also be approximated by a beta distribution and can be fitted to the data by
Asakura et al. [6], and by Soai et al. [137], although in this case the fit is worse.

Barabás et al. [11] analyzed the enantiomeric excesses obtained in absolute enantio-
selective synthesis by asymmetric autocatalysis (Soai-reaction). Two sets of parallel
experiments, which were performed under chemically different conditions, are avail-
able. One group contains 37, while the other 84 preparative results. The former group
shows some interesting tendencies, but does not give conclusive statistical results. The
sample of 84 parallel experiments, providing 39 R- and 45 S-excesses have shown that
these data represent two distinct sets with different non-Gaussian distributions. Clear
S-preference was found. Possible reasons for this unexpected behavior include the
parity violating energy difference between the transition states leading to the two
enantiomers ([87]).

Terrestrial biochemistry supports L-α-amino acids and D-sugars [152]. This chiral
preference may be a result of very small differences between the energies of enantio-
meric molecules. The energy differences are so small that the propagation of homo-
chirality would require a dissymmetry amplification mechanism involving both large
quantities of reactants and a long reaction time. Alternative theory: A small parity vio-
lating energy difference between the corresponding state energies of a chiral system
and its enantiomeric system may preferentially stabilize one with respect to the other.
Kinetic mechanisms amplify this dissymmetry to yield homochirality. It may also hap-
pen that asymmetrically crystallyzed achiral clays may serve as a catalyst to amplify
this prebiotic-biotic transition. Matsuura and Koshima [92] assert that formation of
an asymmetric crystal may help form chirality. A large number of achiral compounds
such as benzophenone, phenol, phenantrene, etc. are known to crystallize into chiral
crystals from their solutions. It has been proved experimentally that enantiomorphs of
such crystals can induce very efficiently excess chirality in one or other direction at
asymmetric autocatalysis (e.g. [63] and references cited there). See also [22].
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Kondepudi and Nelson [72] uses the reaction

A + B
k1�

k−1
R, A + B

k1�
k−1

S, (42)

A + B + R
k2�

k−2
2R, A + B + S

k2�
k−2

2S, (43)

R + S
k3−→P. (44)

(Let us note that the reaction is kinetically very similar to (7) except that the first four
steps are reversible and a kind of sink is also included in the same way as in (12)).
In model systems that spontaneously evolve to a state dominated by either the R, or
the S enantiomer, parity violation is thought to be too small to have any significance
on the emergent chirality [84]. There is a simple and extremely sensitive mechanism
by which a minute but systematic chiral interaction can, over a period of cca. 15,000
year determine which enantiomer will dominate. Mason and Tranter, or [91] state that
the terrestrially dominant L amino acids are favored by the weak neutral current inter-
action. The above reaction is investigated using the deterministic model and also by
the Fokker–Planck equation. They also derive the Langevin equation: α̇ = α3 + . . .

from the model, and calculate distributions as a function of g with the assumptions
kS = (1+ g)kR D.

Barabás et al. [10] analyzed the statistical distribution of enantiomeric excess ob-
tained by two sets of parallel experiments of absolute asymmetric synthesis by asym-
metric autocatalysis. They have found that experimental data give an excellent fit to
a mixture of two beta distributions, where the components are in a golden section
ratio. The parameters of this higher order beta distribution were found by computer-
simulated Pólya urn model experiments. The urn model experiments indicate that the
Soai-autocatalysis might operate by three concerted and cooperating catalytic cycles.
These results provide a general model of asymmetric autocatalysis Actually, the fit
is better than the one obtained by Lente [80], who used a (very special) single beta
distribution for fitting.

Gridnev et al. [51] in a mostly experimental (NMR, HPLC) paper shows that a
symmetric autocatalysis in ZnR2 alkylation of pyrimidin-5-aldehydes, spontaneous
enantiomeric excess, is independent from reaction parameters. Enantiomerically en-
riched product without initial bias may be due to stochastic effects. They propose the
mechanism A+2R −→ 3R, A+2S −→ 3S, A+S −→ 2S+R, A+R −→ 2S+R.

(We do not see how the principle of mass conservation is obeyed here.) Stochastic mod-
eling here means to use binomial distribution. They also consider the dimer catalyzed
model: R2+ A+ Z−→R2+ RZ S2+ A+ Z−→S2+ SZ , but make no theoretical
statements on it.

A description of a small autocatalytic system using Langevin equation is given by
Togashi and Kaneko [145].

ODE model with random parameters Todorović, Gutman and Radulović [144] state
that if the reaction (12) was absolutely racemic initially then it will remain forever.

123



484 J Math Chem (2010) 48:457–489

However, with a small initial enantiomeric excess the system evolves into a homo-
chiral state provided k3 < k2, or into a racemic terminal state, if k3 > k2, where k2
and k3 are rate constants of the second order steps. They give a very detailed analysis
based on numerical calculations of an ODE model with random parameters.

Perhaps it would be worth analyzing the standard stochastic model of the same
reaction.

Kou et al. [74] uses a semi-Markov process to describe chirality.
Pál [106] studied the stochastic properties of the lifetime of small systems controlled

by autocatalytic reaction by using the standard model of reaction kinetics.

4 Conclusion

Let us summarize what we have learned from the dynamic models of chirality. Follow-
ing [89] (which is more recent and more detailed than [91]): considering that sugars
may have more than one asymmetric C atoms, let us concentrate on the simpler case
of amino acids. One has three questions to answer.

1. Initialization, or the origin of asymmetry.
2. Amplification of small differences.
3. Why does living Nature have just L-amino acids and D-sugars?

4.1 Possible mechanisms of initialization

4.1.1 Randomness

According to Barabás et al. [12] isotopic substitution in isotopically prochiral groups
of otherwise achiral molecules can provide such concentrations of stochastically
formed enantiomeric excesses, which are exceeding the sensitivity threshold of sensi-
tive asymmetric autocatalytic (Soai-type) reactions. Caglioti et al. [24,25] have shown
that even the chirality of a single molecule can be amplified to macroscopic levels by
Soai-type asymmetric autocatalysis. See also the recent papers [64,65].

4.1.2 External asymmetry

Enantioselective decay or catalysis Országh and Beck [104] An early hypothesis
of the origin of optical activity comes from [27]: Stereospecific autocatalysis is sup-
posed to be the main reason. Hochstim ([57]) has added some fluctuation analysis,
based on the

√
(N ) rule without chemical analysis. In that paper the author estimates

the reaction rate coefficients, and conclude that supercatalysis is needed to understand
homochirality. More specifically, [73,80] investigates practically the model by Frank
[42]:

A←→ 0.5R,

A←→ 0.5S,
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A + R ←→ 2R,

A + S ←→ 2S,

and shows that the standard deterministic model of this reaction is not capable of
clarifying homochirality whereas the standard CDS model even with first order auto-
catalysis is able to show considerable enantiomeric excess.

Asymmetric catalysis with chiral crystals Quartz is chiral, but chemically inac-
tive, perhaps adsorption may have a role. There is, although a very small, enan-
tiomeric excess of the two forms of quartz crystals in nature, although this remains
within the limits of statistical error.
Photochemical effect of polarized light Polarized light through a solvent with no
enantiomeric excess may initiate an enantioselective process. Experimental proof
exists (an instance has been found). Polarized light in nature: differences can be
found between sunrise and sunset.
Parity violation of β-decay Left-rotating electrons are more abundant. Experi-
mental proof exists, but the effect is very weak.
Parity violation of WNC Between electrons, and between electrons and neutrons.
Consequence: atoms are chiral with respect to electromagnetic radiation, such as
e.g. light. L and D amino acids have a different energy content. L enantiomers are
more stable. Factors corroborating this effect: polymerization, interaction between
molecules, larger molecules. Experimental proof exists: [72,69].
Local fluctuations because of diffusion [6,7] says that if the growth in a local
concentration due to an autocatalytic process overcomes diffusion, a concentra-
tion fluctuation on a small volume will grow. In a chiral autocatalytic system this
phenomenon could produce a large variation in enantiomeric effects.

Meteorites, comets, asteroids rich with L-amino acids (Murchison meteorite, [77]
and Tagish Lake meteorite, [113]). Proofs: isotope ratios, unknown amino acids. L
enantiomeric excess. Enantioselective processes in the space: supernova explosions
of type II and circularly polarized radiation.

4.2 Amplification

See the models above. Let us also remark that problems of signal transduction are of
very similar nature from the modelling point of view [117,123,131], because in both
situations a small, perhaps even microscopic signal is amplified to the macroscopic
level with the aid of a kinetic mechanism.

4.3 Why just L-amino acids?

They are a bit more stable than the other enantiomers.
Bada [8] reviews the lectures of a conference saying that the result of physical

mechanisms (parity violation in weak interactions) should be amplified via autocatal-
ysis. Racemization of amino acids is also a problem, even in vivo. L-amino acids turn
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into a racemic mixture in a period of the order of a few 1000 years (depending also
on the chemical structure of the amino acid). Thus, spontaneous racemization should
block chiral selection.
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90. T.A. Martinek, T. Varga, K. Balázsik, G. Szöllősi, F. Fülöp, M. Bartók, J. Catal. 255, 296 (1998)
91. S.F. Mason, Nature 311, 19 (1984)
92. T. Matsuura, H. Koshima, J. Photochem. Photobiol. C: Photochem. Rev. 6, 7 (2005)
93. P. Medgyessy, Decomposition of superpositions of distribution functions (Publishing House of the

Hungarian Academy of Sciences, Budapest, 1961)
94. P. Mezey, in A global approach to molecular chirality, ed. by P. Mezey New developments in molec-

ular chirality (Kluver, Dordrecht, 1991), p. 257
95. P. Mezey (ed.), New developments in molecular chirality (Kluver, Dordrecht, 1991)
96. L. Michaelis, M.L. Menten, Biochem. Z. 49, 333–369 (1913)
97. K. Micskei, M. Maioli, C. Zucchi, L. Caglioti, G. Pályi, Tetrahedron: Asymmetry 17, 2960 (2006)
98. K. Micskei, G. Póta, L. Caglioti, G. Pályi, J. Phys. Chem. A 110, 5982 (2006)
99. K. Micskei, G. Rábai, E. Gál, L. Caglioti, G. Pályi, J. Phys. Chem. B 112, 9196 (2008)

100. W.H. Mills, J. Soc. Chem. Ind. 51, 750 (1932)
101. I. Nagypál, I.R. Epstein, J. Phys. Chem. 90, 6285 (1986)
102. I. Nagypál, I.R. Epstein, J. Chem. Phys. 80, 6925 (1988)
103. G.E. Ornstein, L.S. Uhlenbeck, Phys. Rev. 36, 823 (1930)
104. I. Országh, M.T. Beck, Magyar Kém. Folyóirat 86, 248 (1980)
105. L. Pasteur, Compt. Rend. 26, 535 (1848)
106. L. Pál, Arxiv preprint cond-mat/0407106, (2004)
107. G. Pályi, C. Zucchi, L. Caglioti (eds.), Advances in bioChirality (Elsevier, Amsterdam, 1999)
108. G. Pályi, C. Zucchi, L. Caglioti (eds.), Progress in biological chirality (Elsevier, Oxford (GB), 2004)
109. G. Pályi, K. Micskei, L. Zékány, C. Zucchi, L. Caglioti, Magy. Kém. Lapja 60, 17 (2005)
110. K. Pearson, Proc. Roy. Soc. (Lond) 60, 489 (1897)
111. X. Peng, W. Zhou, Y. Wang, J. Chem. Phys. 126, 224109 (2007) (9 pages)
112. M. Pineda, R. Imbihl, L. Schimansky-Geier, Ch. Zülicke, J. Chem. Phys. 124, 044701 (2006)
113. S. Pizzarello, Y. Hang, L. Becker, R.J. Poreda, R.A. Nieman, G. Cooper, M. Williams, Science 293,

2236 (2001)
114. R. Plasson, H. Bersini, A. Commeyras, Proc. Natl. Acad. Sci. USA 101, 16733 (2004)
115. G. Pólya, Math. Ann. 84, 149 (1921)
116. G. Póta, G. Stedman, ACH-Models Chem. 131, 229 (1994)
117. H. Qian, Biophys. Chem. 105, 585 (2003)
118. H. Qian, E.L. Elson, Biophys. Chem. 101–102, 565 (2002)
119. H. Qian, S. Saffarian, E.L. Elson, Proc. Natl. Acad. Sci. USA 99, 10376 (2002)
120. V.T.N. Reddy, J. Statist. Phys. 13, 61 (1975)
121. A. Renyi, MTA Alk. Mat. Int. Közl. 2, 83–101 (1953)
122. Y. Saito, T. Sugimori, H. Hyuga, J. Phys. Soc. Jpn. 76, 044802 (2007)
123. M. Samoilov, S. Plyasunov, A.P. Arkin, Proc. Natl. Acad. Sci. USA 102, 2310 (2005)
124. I. Sato, D. Omiya, K. Tsukiyama, Y. Ogi, K. Soai, Tetrahedron: Asymmetry 12, 1965 (2001)
125. I. Sato, D. Omiya, H. Igarashi, K. Kato, Y. Ogi, K. Tsukiyama, K. Soai, Tetrahedron: Asymme-

try 14, 975 (2003)
126. L.J. Schaad, J. Amer. Chem. Soc. 85, 3588 (1963)
127. S. Schnell, M.J. Chappell, N.D. Evans, M.R. Roussel, Compt. Rend. Biol. 329, 51 (2006)
128. S. Schnell, K. Maini, Math. Comput. Model. 35, 137 (2002)
129. El-Fayyoumi Shaimaa, M.H. Todd, Abstracts of papers, 232nd National Meeting, San Francisco,

United States, Sept. 10–14, 2006
130. J. Shao, L. Liu, J. Phys. Chem. A 111, 9570 (2007)
131. T. Shibata, World Sci. Lect. Notes Complex Syst. 3, 203 (2005)
132. T. Sipos, J. Tóth, P. Érdi, React. Kinet. Catal. Lett. 1, 113 (1974)
133. K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 378, 767 (1995)
134. K. Soai, T. Shibata, I. Sato, Acc. Chem. Res. 33, 382 (2000)
135. K. Soai, I. Sato, T. Shibata, Chem. Record 1, 321 (2001)
136. K. Soai, Viva Origino 30, 186 (2002)

123



J Math Chem (2010) 48:457–489 489

137. K. Soai, I. Sato, T. Shibata, S. Komiya, M. Hayashi, Y. Matsueda, H. Imamura, T. Hayase, H.
Morioka, H. Tabira, Y. Yamamoto, Y. Kowata, Tetrahedron: Asymmetry 14, 185 (2003)

138. K. Soai, T. Shibata, I. Sato, Bull. Chem. Soc. Jpn. 77, 1063 (2004)
139. K. Soai, T. Kawasaki , ed. by K. Mikami, L. Lautens New frontiers in asymmetric catalysis

(Wiley, Hoboken, 2007), p. 259
140. K. Soai, T. Kawasaki, Top. Curr. Chem. 284, 1 (2008)
141. K. Soai, T. Kawasaki, in Organometallic Chirality, eds. by G. Pályi, C. Zucchi, L. Caglioti (Accad.

Nazl. Sci. Lett. Arti - Mucchi Editore, Modena, 2008), p. 107
142. K. Soai, T. Kawasaki, Chem. Today 27(6, Supplement), 3 (2009)
143. M.O. Stéfanini, A.J. McKane, T.J. Newman, Nonlinearity 18, 1575 (2005)
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